首页> 外文OA文献 >Model- vs. data-based approaches applied to fault diagnosis in potable water supply networks
【2h】

Model- vs. data-based approaches applied to fault diagnosis in potable water supply networks

机译:模型与基于数据的方法应用于饮用水供应网络中的故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, the problem of fault diagnosis in drinking water transport networks\ud(DWTNs) is addressed. Two different fault diagnosis approaches are proposed to deal\udwith this problem. The first one is based on a model-based approach exploiting a-priori\udinformation regarding physical/temporal relations existing between the measured variables\udin the monitored system, providing fault detection and isolation capabilities by\udmeans of the residuals generated using these measured variables and their estimations.\udThis a-priori information is provided by the topology and the physical relations between\udthe elements constituting the system, which is used by design in order to derive\udfault diagnosis. Differently, the second approach does not require the physical a-priori\udinformation of the network to operate. It relies on a data-driven solution meant to exploit\udthe spatial and temporal relationships present in the acquired data streams to detect\udand isolate faults. Relationships between data streams are modelled through sequences\udof linear dynamic time-invariant models whose estimated coefficients are used to feed\uda Hidden Markov Model (HMM). When the pattern of estimated coefficients cannot be\udexplained by the trained HMM, a change is detected. Afterwards, a cognitive method\udbased on a functional graph representation of the system isolates the fault. Finally, a\udperformance comparison between these two approaches is carried out using a part of\udthe Barcelona water transport network.
机译:本文针对饮用水输水网络\ ud(DWTNs)的故障诊断问题进行了研究。提出了两种不同的故障诊断方法来解决这个问题。第一个基于基于模型的方法,该方法利用与被测系统中被测变量之间存在的物理/时间关系有关的先验\ udin信息,通过使用这些被测变量生成的残差\ udmeans提供故障检测和隔离功能。 \ ud此先验信息是由拓扑和构成系统的各个元素之间的物理关系提供的,设计使用这些信息以得出\ udfault诊断。不同地,第二种方法不需要网络的物理先验\信息来运行。它依赖于数据驱动的解决方案,该解决方案旨在利用所获取的数据流中存在的时空关系来检测/隔离故障。数据流之间的关系通过线性动态时不变模型的序列\ ud来建模,其估计系数用于馈送\隐马尔可夫模型(HMM)。当训练后的HMM无法解释估算系数的模式时,将检测到变化。然后,基于系统功能图表示的认知方法将故障隔离。最后,使用巴塞罗那水运网络的一部分对这两种方法进行性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号